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By Chuug-Hua M and cllrtiS A. Brown

A method of obta~g the flow of a nonviscous coqressible fluid
past arbitrary compressor or turbine blades between two neighboring sur-
faces of revolution is presented. The equations of ccmtinuity and
motion obtained for such flow ue ccmkdned into a nonlinear secaud-
order clifferential equation in terms .ofa stream functicm defined for
such flow. Numerical solution by the use of differentiation coeffi-

,, cients for unequally spaced grid points is suggested. Means for satis-
fY@! the bowdary c~titio~ outside the channel.and solutions by the
relaxation method with manual computation and by a matrix method with a
large-scsle digital computing machine are described.

Satisfactory results were obtained by the method described in the
investigation of the detailed flow variation of a compressible fluid
past typical high-solidity, highly cambered thick turbine blades m a
cylindrical surface. The variations in fluid properties across the
channel appeared to be representableby a second-de~ee function. The
mean streamline approximately folbwed the shape of the mean channel
line of the cascade and had lower curvature. The variation of specific
mass flow along the mean streamline followed the trend of the varia-
tion in the channel width. In general.,the variatim in specific Bss
flow was significantlyhigher than that given by the ratio in channel
width snd the effect extended outside the channel. The velocity distri-
bution around the blade obtained in the theoretical calculation comp~es
very well with experimental values.

llW130DUC!lIIOll

A basic aerodynamic problem of turbojet

—

and turbine-pro~eller -
engines is the flow of coqres sible fluid-past a series & b-kalesin
Circriklrarrangement. In axial-flow type turbomchiues, if %he blades
are relatively short in the radial dimension and are bounded by cylin- ‘
drical walls, the theoretical flow passing through the blades is usually
co~uted on the basis of two-dimensional flow on a cyhdrical surface,
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which is then developed into a plane for convenience of calculation. A
number of methods have been proposed to obtain the theoretical flow
through such a given cascade of airfoils, inclu~ analytical methods

.

using conformal mqping, titerference technique, and Prandtl-Glauert or G

Chaplygin-K&m$n-Tsien approximation for compressible flow (referaces I \
to 6), graphical procedure (references7 to 10), and other mechanical
and electrical.devices (reference10). Fcm radial.-and mixed-flow type
turlmmachines, the available methods cansider incompressible flow in a
radial plane (references 7 and 11 to 16) or compressible flow on a coni-
cal surface (reference 17). Howev~, in current axial-flow turbo-
macldmes, the hub and casing walls may be either tapered or curved,

‘s which causes the fluid to flow on a noncylindrical surface; and in cen-
trifugal machines, the flow surfaces are usually quite cmrved toward
the inlet (see fig. 1). A method of analysis is therefore developed at
the l?ACALewis laboratory to analyze the two-dimensiaml compressible
flow for the fluid between two neighbor- surfaces of revolution in
these turbomachines (fig. 1). The equations of continuity and motion
fw irrotational absolute flow sxe first obtained for such flows and are “
then conbined into a nonlinear second-cmkr partial ttiffer~tisl eqw-
tion. Because the change of fluid properties passing through turbo-
mackhe blades is, in genersl, large and the shapes of surface and
blades are arbitrary, numericsl solution by the finite-iWl?f~ence
approach is suggested.

Solv5ng the flow throu@ a cascade of blades of arbitrsry caniber
and thiclmess by the finite-differencemethod tivolves two main diffi-
culties: (1) the curved boundaries formed by the blade surface, and
(2) the large nuniberof grid points necessary to cover the whole flow
region. 5e first difficulty is removed by the recently availabh? &lf-
ferentiaticm formula and coefficimts for unequally spaced gzid points
(reference 18). With these formulas and coefficients, the curved bound-
ary can be handled in the same msnner as a straightboundary. The
seccmd difficulty can be reduced by the use of higher-degree polynomial
representations (references18 and 19). Furthermore, if a mokrn high-
speed large-scale digital machhe is available, the set of simd.taneous
i13fferenceequatims in the stream function can be vq quickly solved
by the matrix process given in reference 18, and consequently, suc-
cessively improved s~utions for coqressible flow can be obtained in a
reasonably short ttie. Withoti such a machine, it is desirable to
obtain an approdmat e solutia for compressible flow by either grapl+ic,
mechanical, or other approxhate methods and to use the relaxation
method (references 20

In turboma&es
lniband casing walls,
free-vortex type, the

and 21) for the final @movements.

with a rdativel.y large radial dimension, curved
or if designed on velocity di~ams oth~ than the .
radial flow assumes primary iqm-knee. For such
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turbomwhines, methods of flow analysis have been proposed that take
into account the radial flow but consider only the variation of the
fluid propert~es on a mean stream surface passimg between two blades
(reference 22). When applying such methods of analysis to turbomachhes
with thick blades, it is necessary to have some knowledge of the effect
of area reduction due to blade thickness on the mean flow and the rela-
tion between the blade shape and the shape of the mean streamline at
various radii. For this reason, the method developed is applied to
investigate the detailed compressible flow h a typical tibtie cascade- — _
with highly @ered thick blades. The theoretical velocity an the
blade is compared with experimental data obtained at the IQ&A Lewis

-.D

laboratory.

The following synibolsare

SYMBOLS

used in this report:

a,b,c

B

c

E

H

h

I

L

Z,ql

M

n

P

P

r

points on streamline

differentiationcoefficiemts

constant

error

total enthalpy based on absolute velocity

static enthalpy

G G

blade length projected on z-as ~

orthogonal coordinates on m= -ace of revolution~(fig. 1)

total mass flow passing
blades

degree of polynomial

pitch or spacing

static pressure

through space between two neighboring

radial distance from the axis of machin~ (fig. 1)
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t blaie thickness in pitch direction

NACA TN 2407

w velocity relative to blade

Y rq

z distance slong axis of mchine,

.Ii
d“

(fig. 1)

a

r ratio of specific heats

P IUSS density

u t*-1 :, [fig. 1)

T nmmal thickness of stresm filament of revoltiion, (fig. 1)

$ stream function

o ~ VdocitY of blade

Slibscripts:

i inlet ‘

j,k grid points where clifferentiation coefficients me applied

2,9 meridional and circumferential component, (fig. 1)
.

m mean streamline

n degree of polynomial

P pressure surface

s suction surface

n

,,

T total, or stagnatim, state
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superscripts:

a,b,c, . . . i~j~k grid points

1,2 indicate first

METHOD OF

5

and seccmd derivatives, respectively

SOLUTION

The steady isentropic flow of a nonviscous compressible fluid along
a stream filament of revoluticm described by the orthogonal coordinates
Z and q on the mea surface of revolution and a varyhg narmal thick-
ness of the filsment T (fig. 1) is governed by the following equa-
tims of continuity and irrotational absolute flow and the isentropic
pressure-densityrelati~ (see appendix fm derivation of the first two
equations):

{1)

.,
aw
9 1 a%I’&3in~
z +a)sinu=o‘FT+ r (2)

p=cpr (3)

From equation (1”),a stresm function $ can %e defined by the
fo130wing relations:

TpWzr =
%

a
8TPWP = - ~

)

S@stituting equations (4) h equation (2) results h

(4)
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h the numerical solution of the problem, iteration is necessary
for compressible flow. A network of grid points is chosen to cover the

T

whole flow region, and finite-difference equations are obtatied for the
first three terms of equation (5). The last term is taken as constant
during the soluticm of the W values and recomputed from the improved
values of ~ for the next solutim (references 20 and 21). b this

g

way, the numerical coefficientsat each grid point are determined by
the geometry of the problem alone.

5e value of density is most cmveniently expressed throughout the
flow regian in terms of velocity and enthalpy by the use of equation (3)
and the relation for a perfect gas:

where I is constant throughout the flow region for adiabatic, abso-
lutely tiotational, and steady relative flow (reference 22). (For “
application to stator blades, o becomes zero, W becomes the abso-
ltie velocity, and I becomes H.) If the components of W as
expressed by equatims (4) are substituted in equation (6), the follow-
ing eqyation is

_&=
Y

L

(g’)2+*(~y
2 Hi T2P2

(7)

In order to facilitate the evaluation of the density from the
~-derivatives, equation (7) can be rewritten in the following fcmm:

2

z = (1 - o~ )Y-l

where

(7a)

e

— ——
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and

7

With the relation between p and ~-derivatives in this form, either a
table may be constructedby computing ~ for equally spaced values of 0
through iteration on a punch card machine, or a graph may be camtructed
by computing @ for a nmiber of ~. Because ~ ~, ~, I, o, r,

and T are all known values, with the aid of the’table or graph, the
value of density at any point can be easily obtained after the first-
order derivatives of ~ are c~uted by using the d&erential coeffi-
cients for equslly and unequally spaced grid points given in refer-
ences 23 and 18, respectively.

The first-ader derivatives of density are then computed and com-
%ined with the first-order derivatives of ~. If the last term in equa-
tion (5) is denoted by J and the differmtiation coefficients, which
multiply the ~ value at point j to give the secmd and first
derivatives at point i using an nth-degree polynomial, are denoted by

~~ @ ~B~, respectively, the ftite-difference form of equation (5)

at the grid point i can be written as

where ~j and ~k denote ~ values on the surface along Z and q
coordinates, respectively (figs. 1 and 2). If secmd-degree polynanial
representaticm is chosen (n=2), three potits we involved in the
numerical differentiation in each direction, and the center-point for-
mula can always be used for all interior grid potits. If fourth-degree
polynomial representation is chosen (n=4), five points are tivolved
in each direction and the off-center-pointformula has to be used at
the point nexb to the boundary. Two typical cases where odd spacings
are used in the calculation of the coefficientsbecause of a curved
boundqy are shown in figure 2. In the case where vi is at j=2,
k=’, the center-point forrmh is used in both &Lrecticms, with equal-
space Z-direction coefficients obtainable from ref~ence 23 and

. . ... . . .- ._ ..__ ______ ___ — ———.— ———.
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.
with
able
k=3,

Cp-directioncoefficientsfor the
from reference 18. In the other

I?ACATN 2407

oid space at the boundary obtain-
case here *1 is at J=2,

agati the eqti-space center-point coefficients are used in the
Z-direction;but in the~-direction an off-center-pointformula far
coefficientsmust be used, including an odd space at the boundery,
again obtainable from reference 18. It is desirable, where possible,
have the spacing near the boundary somewhat shorter than the regular
equal spacing so that accuracy at the point next to the boundary is
cmparable with that at other points. By using a five-point system,
- less ~id Potits are required in mmparison with the three-point
system for the same accuracy. {See reference 18.) In the present

to

~oblem, the vsriation of $ is only rapid near the leading and trail-
ing edges of the blade and the grid pattern should be determined for
these regions first.

After the degree of polynomial representation and the size of grid
have been chosen, a finite-difference equation (8) can be easily written
for each interior grid point using the differentiation coefficients fcm
equal and ;nequ.alaid spacings. The
surface can be arbitrarily chosen and
pressure surface is detmed by the
channel or at the inlet as foll.ows:

constant v value on the suetion
the constant ~ value on the
mass flow passing through the

r%
% -*S j% %@=Jqs‘Pwzr‘q=

Outside the channel *O reference lines, a pitch angle
drawn either mrallel to the Z-axis or parallLelto the

M (9)

apart, can be
inlet and exit

-es in the-Xp-ptie. (Parallelism&th the inlet and exit angles,
as shown in fig. 3, is a little more convenient for the purpose of
drawing streamlines sf’terthe solution is obtained.) Because the
fluid state repeats itself for each pitch angle along the ~-directicm,
only the grid pointd lying between the reference lines need to be
included in the calculationwhen the number of grid spaces per pitch
angle is an integer, and the central five-po~t formula can always be
used at every grid point between these lines. For example, at grid
point c (fig. 3), the ~ values at a and b are obtained in terms
of the ~ vslues at i and j, which are a pitch angle apart from
a and b, respectively,by the follkming relaticm:

.

W=vi+h-p-vs)

@ = l/d + (Vp - *J
(lo)

. ..—— .—— — -——.



2 NACA TN 2407 9

Tnlet and Exit Boundary Conditions

> The solution of the present problem in terms of ~ has an inter-
J
] esting feature in the boundsry conditions. As noted in the previous

section, the ~ value is constant along either the suction or pressure
surfaces, whi& are fixed boundaries; and outside the channel, there is
no longer a fixed boundary, but there is the condition that the flow
repeats itself for every pitch angle in the ~-direction. Sufficiently
fsr upstream of the blade, an inlet station can be chosen so the bound-
ary condition there requires the fluid state to be uniform in the
%direction and prescribes the imlet angle Pi. The following two
methods have been devised to account for this boundary condition:

Fixed-a@ e methcxl.- A part of the grid system in the @-plane
near the inlet station i-i is shown in figure 4(a). h order to write
the finlte-dMference equation at petit a, the value of ~ at
point c to the left of station i-i can be obtained by using the given
inlet angle Pi and the Mnear variation of $ at station i-i

.

The coefficients of @ and ~b in equation (Xl) after havtig been

multiplied by n% ue added to the regular coefficients at points a

and b; otherwise the points a and % are treated in the ssme manner
as other interior points. Whether the inlet station i-i is chosen suX-”
ficiently far away from the blade is indicated by the linearity of the
~ variation at that staticm m obtatied in the solution.

Streamline-adjustmentmethod. - If the first station i-i is chosen
sufficientlyfar from the blades, the variation of stream function to
the left of the station i-i is linear in the circumferential direction.
The value of the stream function, however, depends on the inlet angle.
If solutions for a range of inlet angles are desired, they can be
obtained by specifying a numiberof linearly varying stream functions to
the left of station i-i as fixed boundary values. The streamMne
obtained in the solution then gives the value of the inlet angle. If,
howeva, the solution fa a certain inlet angle is desired, the stream-
line obtatied in the solution must be adjusted according to that inlet

4

. .
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10 I?ACATN 2407

angle, (for example as ab b fig. 4(b) is adjusted to position at),
thereby obtaan an brproved set of boundary values of the stream
functions to be used in the next calculation. This method is of course ‘
not as accurate and convenient as the fixed-emgle method f% obtaining
a solution for a given inlet angle but is desirable in the matrix solu-
tion (to be discussed in the following section) because the inlet angle
is not involved in the matrix factorization, inking the same matrix
factws usable for a range of inlet angles and Mach numbers.

At the etit station fsr downstream of the blade, the same methods
.- can be applied. Far a blade hav3ng a sharp trailing edge, the Kutta-
---- Joulcowskicondition can be used and the correct exit angle far down-
F stream is the me that gives the flow at the trai13ng edge satisfying

that condition. For round trailing edges, either the position of the
stagnation point can be assumed or some available empirical rules for
the exit @e used. If the calculation is made to compare with cer-
tain experimental results, the heasured exit angle can be used.

Solution of Finite-Difference Equations \

With the grid system and the degree of polynaial representation
chosen and the boundary conditions taken into account, the problem

v

remaining is the solution of the set of N linear algebraic equa-
tions (8) written fcm N interior grid points. For a small.numiberof
solutions with a given blade, the best method is the relaxation method
(reference 20). A modification of this method involrhg the use of
higher-order differences is suggested by Fox (reference 18). Fcmmulas
and the table of coefficients obtained in reference 18 enable the
direct use of higher-degree polynomials for problems with curved bound-
aries. For the present flow problems, it is necess~ to include a
large dcmain to get to the boundary conditions that are given at places
far from the blades. The use of higher-degree polynomials will greatly
reduce the ~iC~ work.

If a nuubr of cases are to be solved fw a given set af?blades
on a given surface, it is ad~tageous to solve the problem a a lsmge-
scale digital ccmputing machine. If a very high-speed digital machine
is available, the shultsmeous e~tion is best solved by Lielmann$s
iterative process, which is the most simple to set up (reference 24).
~ only a relatively slow-speedmachine is available, the matrix
process ~ested in ref=ence 18 is most suitable.

&

I .
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Matrix solution. -. In the nmtrix solutim, the entire equatim (8)
is used with p being kept constant during any one cycle. Several

j. cycles sre necessary for compressible flow because p is in a continual

) process of change during each calculation accordingto equation (7).
The matrix method is found most satisfactorywhen several solutions are
required for a given bla~ configuration, (for instance, in the case
where the flow is to be determined through a blading at several inlet
I&chntiers or inlet angles) because the factorization of the nwtrix
is the most time-consuming part of the problem and once completed the .-

matrix may be used a@n and again as one C& the wet flow conditions -x-.-’

is varied. For example, in a problem similar to the cascade problem
tiwhich 400 grid points andfourth-degree polynomials were used, it
took about 60 hours to factorize the matrix on an IBM Card Programmed
Electrmic Calculator, and solvhg the set of values of ~ at all
grid potits for a given set of J values only tskes 2 hours. The
rounding-off error is found to be very small.

Rehxation solution. - h the relaxation solution, the entire equa-
tion 18) is used in the calculation of the residuals; but only the first
two terms we used in the actual relaxation. As in the matrix solution,
sever~ cycles sre req@red for compressible flow because p is not
allowed to vary during the relaxation process whereas actually p is
chmging according to eq~tim (7). Consequently, after each cycle
new values of p are calculated and used in the determination of an
improved J as in the matrix method.

Iteration method of Liebmann. - The iteration method of Liebmann
is simplest to set up on a digital computing mmhine; but it is the
slowest method, and therefore it can WY be used for the present
problem on a high-speed machine. The boundary conditions and the
between-cycles J correction process are the same as those in the
matiix and relaxation methods.

ACCURACY OF FINAL RESULTS

Sevad. factas affect the,accuracy of the final results: the
de~ee of Lagran@au polynomial used, the size relative to the airfoil
@ the netw~k spacings, the smaUness to which the residuals are
reduced, and the number of cycles c-ied out for compressible flow.

The fourth-degree Lagrangian polynomial has been found to be the
most applicable to the type of calculation under consideration. The
use of a second-degreepolynmial, in genemd, requires a smaller
grid spacing, necessitating a much larger nuniberof netwwk points than

.—..——- ----——--——-— -—————————— —-.. ———.... —— .._. _—. —.——
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the fourth-degree polynmial. Polynomials of higher degree than the
fourth are not desirable within the channel, because fitting the points , *
necessary for these higher-degree polyncnnialscircumferentiallyinside
the channel may require a smaller grid spacing. Also the accuracy near
the leading and trailing edges of the blade is best obtained by using
small spacing. Outside the channel, however, the use of a higher-
de~ee polynomial would not only reduce the amount of work but also
would specify more completely the condition that the flow repeats cir-
cumferentidly ev~ pitch angle.

Formulas that can be used, sf’terthe problem has been canpleted,
to determine the order of magnitude d the error at sny point are given
in references El and 23. These formulas give only qualitative informa-
tion cmcermhg the obtainable accuracy for the grid size and the
degree of polyn~al chosen, especially when there is no solutim of a
similar problem available. Because no solution is available with which
to ap@y these formulas at the start of the example to be discussed in
the follo’dng section, a scmewhat smaller grid spacing than that
required for the use of‘a fourth-degreepolynomial across the channel m

is chosen. (See fig. 3.) Results obtained in that example indicate
that the grid chosen gives sufficient accuracy for the present purpose.
lY a more accurate result is desired around the nose a tail region, a

either small spacing can be used in these regimm a the flow in these
regions can be improved by using a finer net after the soltiion Is
obtained with the original coarse net.

For the wtrix and iteration methods, the final accuracy is
det~ed by the choice of grid size and degree of polynomial; for
the relaxatim method, however, the de~ee of residual reduction must
also be included in an accuraay determination. The smaSlness to which
the residuals can be reduced depends essentially on the amount of
labor put into the problem; but the smaldness may.be Nt ed by the
use of too large grid spaces w too low a degree of polynomial. An
approximate method fw esthating, at the beginninn of the problem,
the degree of residual reduction necessary is outlined as follows: It
is assumed that an error of 1 percent in addition to that introduced
by the finite-difference equations will be tolerated in the first arder
derivatives of v. For example, the following equation c-enbe written
in the %diroction by the use of the usual differentiationfornnih:

()(%a=@+ Ec)-(we+Ee
25P

(12)
,,

.
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where the ~rs are the correct values of ~, the E’s are the mag-
nitudes of the errors in ~, 5P is the grid spacing in the CQ-
direction, and the superscripts C, ds ~ e refer to the equa~~
spaced grid points (fig. 3). Equation (I-2)maybe rewrittenas

(13)

Ec - Ee V-P
where, h this case, — is less than 1 percent of —

Z&p
BP as

specified. AS an example, take Wc - We eqpal to’1000, then
EC - Ee< 100 Because a constant magnitu e rror is maintained through-
out any one area in the network, ~[ = !Ee~< 5. The fhal residual
must be such that a change of ~ of no more thm 5 is necessary to
reduce the value of the residual to zero. The absolute value of the
residual can therefore be no great= than the absolute value of 5 times
the relaxation coefficient at the point in question when the final
accuracy is reached. For relatively small grid spacings, this method
should give a good estimate of the magnitude of albwable residual.
Because the relaxation coefficient at the point ti question varies from
point to point, it is advisable to place the correspondingmaximum
allowable residuals on the relaxation sheet for

IWMERICAL ExAm’m

The method described is applied to analyze

ready reference.

the detailed flow past
turbine blades on a cylindrical surface as shown in figgme 3. b ‘&ch
a case, u equals O, Z becomes z, and it is more convenient to
use a distance on the circuml%rence y(=rcp) instead of the singular
coordinate ~ (the reduced equations are given in the appendix].
Because only one incompressible and one compressible solution were to
be obtained at the design conditim, the finite-difference equations
were solved by the relaxation technique. This particular cascade was
chosen because of the relatively high turning and the cmsiderable
thickness of the blade involved, thus giving the method described a
thorough test. Experimental data for several inlet Mach nmibers sre
available for this cascade, increasing its value as a problem choice.
The pitch and axial chord of the cascade are 1.017 and 1.5 inches,
respectively.

The grid, shown superposed on the cascade in figure 3, was obtained
by dividing the pitch into eight equal parts, thereby ariving at a grid
spacing of 0.1271 inch, which is used in both y and z directions.
As suggested, fourth-degreeLagran@n polynomials were used throughout
the domain to obtain the finite-difference equatiuns.

The reference lines outside the channel were drawn parallel to the
flow at the inlet and the exit. The inlet angle is given as 41°18t.
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The exit angle, as computed by the measured pressme far downstream
and the continuity equation, is equal to -

,52°57t, which checks quite
well with the inverse-she eqirical rule. The fixed-angle methcd was
used to account for the inlet and exit boundary condition. The inlet

and exit boundamiea wee pkeed a distance eqpal to ~& times the pitch

from the cascade channel, which was found to be more than sufficient.

The results obtained from the relaxation solution of this cascade
serve a threefold ~ose: (1) They show the usefulness of the method
discussed (2) they give some detailed tiormation concerning the var-

~

iation of flow in a two-dimensional cascade that may serve as a basis
fa devising some shple, good approMmate methods of analysisj and (3)

they give some useful information for the through-flow analysis in
turbines having thick blades.

The results obtained b the incompressible solution are shown in
figures 5 to 13. The variations of the magnitudes of Wz, uy~ and W
across the channel are shown in figures 5 to 7. The variation in ~

is seen to be hrger than that in WZ and larger at the leading por-
tion of the channel than at the traiMng portion of the channel. The
variation of the velocity co~onents across the channel can be accu-
rately represented by a second-degree function in the y-direction.

Sev=al streariUnes,with equal mass flow between tha, sxe shown
in figure 8. Aho shown is the mean channel he and the mean canb=
Line. The mean streamline,which divides the mass flow in the clnuud,
is seen to have a curvature less than either the mean channel line or
the mean caniberline and is closa to the suction surface than the
pressure surface. (The mean c*= line has the highest curvature.)
The slope of the man streamline is compared with those of the blade
mean carob= he and the mean channel line in.figure 9. Dside the
channel the absolute value of the mean streamline slope is found to
be low= than those of the mean caniberand mean channel lines. Pro-
ceeding outward from the Wet chzmnel proper the mesm stresmlAne
slope at first increases above and then approaches the specified inlet
and exit values. Figure 9 shows that the specified values are reached
appro~tely one pitch distance from the blade.

The variations of the mean streamkhe velocity components and their
derivativeswith respect to z are shown in figures 10 to 13. k fig-
ure 10, the variation of Wz along the mean streamline is compared with
the variation in channel width. 13mide the channel, the increase in
Wz due to reduction in channel width is on the average about 4 percent
high= than that given by the one-dimensional calculationbased on the +

reduction of the channel width. The iklfferenceis due to the nonliuear

.— —-— —.
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variation of W ~ across the channel. The influence of the blade thick-
ness also extends a short distance both upstmeam and downstream of the

, “ chmnel. With a finite blade thickness and a finite blade spacing, the
tsmgential velocity on the mean streamline (fig. 12) is seen to rise

$ above its inlet value in front of the leading edge, to decrease rapi~
for the first half of the channel, and then to decrease slowly to a
value below its exit value for a short distance downstream of the trail-
ing edge. The derivative with respect to z of the tangential velocity
is shown in figure 13.

The compressible solution is obtained for an inlet Mach nu?iberof
0.42 in order to compare it with the available experbnental data at
that inlet Mach nudmr. The results obtained (figs. 14 to 23) sre pre-
sented in the same manner as those for the incompressible case. The
velocities (figs. 14 to 16) show a somewhat higher rate of variation
across the channel and can again be appro~ted by second-degree fuuc-

tions●

The difference in streamlinesbetween the compressible (fig. 17)
and the incompressible (fig. 8) solutions is appreciable. In general,
the streamlines are pushed farther away from the suction surface. As a
result} the mean streamMne now appro~tes the position of the mean
channel we better than in the incompressible case but still has a
significantly lower curvature.

The comparison.betweenthe slope of the mean streamline and those
of the mean canibm line and the mean channel 13ne in the compressible

.case (fig. 18) is similar to that in the incompressible case (fig. 9).
Jlmtead of the axial velocity in the incompressible case, the specific
mass flow pwz on the mean streamline is compared with the channel
width h the pitch direction in figure 19. The comparison is similar
although the difference is somewhat @?eater in the compressible case.
The tangential velocity on the mean stremilime obtained in the com-
pressible solution (fig. 20) and-its derivative (fig. 21) are %@m
similar to the corresponMng curves obtained in the incompressible
solution.

The velocity obtained around the blade in the compressible solu-
tion is compsred in figure 22 with the experhental data obtained at
the NACA Lewis laboratory. The agreement is better at the pressure
surface than at the suction surface, as might be expected, and is sat-
isfactory as a whole. Constant Mach number contours obtained in the
relaxation solution sre shown in figure 23. With an inlet Mach number
of 0.42 and exit Mach number of 0.55, the variation of Mach number from
the pressure surface to the suction surface is quite large. The maximum
Mach number on the suction surface exceeds 0.8.

— -—..- .-.—— ___ ._._ -. .—_____ ——- —..—— .- ._—__ .— _
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SUMMARYOF 13FsuLTs

.

A method of obtaining the flow of a nonviscous compressible fluid
past arbitrary compressor or turbine blades between two surfaces of
revolution is presented. The equations of continuity and motion
obtained for such flow are codbined into a nonltiear second-orderpar-
tial.differential.equation in terms of a stream functicm defined for
such flow. Numerical soluticm by the use of differentiation coeffi-
cients for unequally spaced grid points is ~ested. Means for satis-
fY@3 the boundary cmditiom outside the channel and solutions by the
relaxation method with manual cmuptitim and by a wtrix method with
a krge-scale digital computing machhe are described.

Satisfactmy results were obtained by the method described in the
tivestigation M the detailed flow variation of a compressible fluid pst
typical high-solidity highly csmbered thick turbine blades on a cylin-
drical surface. The variatims in fluid properties across the channel
appeared to be representableby a secmd-degree function. 5e mean
streamline approximately fo.llowedthe shape of the mesa channel line
of the cascade and had lower curvature. The variation of specific mass
flow along the mean streamline followed the trend of the vsriaticm in
the channel width. h general, the variation in specific mass flow was
“significantlyhigher than that given by the ratio in channel width and
the effect extended outside the channel. The velocity distribution
around the blade obtained in the theoretical calculation compares very
well with expertie&al values.

Lewis Flight fiopulsion Laboratory,
National Advisory Commitiee for Aeronautics,

Cleveland, Ohio, February 5, 1951.

t-i
In
&j

,(

o

.

.

.——



3 NACA TN 2407 17

AJ?PmmX - DEIUWITIOI?OF EQUM210NS
.

If the fluid flow in turbomachines can be assumed to occur on sur-,
faces of revoluticm,,it may be anslyzed on a two-dimensional basis with
the flow passing through a number ‘ofstream filaments of revolution
(fig. l(a)), the thickness of which may be taken as that obtained in a
through-flow calculation (reference 22). Such flow can be most con-
veniently described by a set of orthogonal coordinates Z and q),
where 2 is the arc length of the generating ltie of the mean surface
of revolution in the meridional plane, and q is the angle (fig. l(b)).
When the flow across an element defined by dZ and dCp is considered
(fig. l(c)), the continuity relation fa steady relstive flow gives

(%+%%P)(.+*%).2.O

Factoring out dcp dZ and allowing d~ and dZ to apprcech
zero in the factor yield

a(pwz) a(pw- pWZr ~
+-’Tr - ‘wzTsin ”-T q ‘0

By the use of the relation

a??
Z’sha

equation (Al) csn be written as

?3(7pwtr) a(Tp )

-P-73r--+ q ‘0

(Al)

(A2)

(1)

For stead.yadiabatic frictionless flow with uniform inlet condi-
tions, the equation of motion in the circumferential direction can be
obtained from equation (14a) of reference 22 as

. . . .. .—.._ _________ _—__ ________ __ —-—— ——-— —-—
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or

(2)

Special Case of Conical Surface

Fcm the specisl case of two-dimensional flow between two neighbor-
ing surfaces d revolution, where the mean stream surface can be taken
as the mmface of a right circular cone whose AS coincides with the
z-axis, c beccmes a ccmstant. E Z is measured from the apex of
the cme,

r= Zsino

smd equations (2) and (5) become, respectively,

1 awl w w astiu=o-—- —-
F’@_ az z

and

.

.

(A4)

(M)

Alternative forms of equations (1) and the preceding two equations can
be obtained in terms of 2 and an angle measured on the cmical sur-
face, as given in reference 17.

.

“

I

—— .—— ——— .—— —.— -———— ——. .— .-
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.

. Special Case of Cylindricd Surface

For the special case of flow on a stream filament-of revoluticm
whose mean surface is

-.

z, and equatias (1),
?

a cylindrical surfacej u becomes zeroj ~ beC=s
(2), (4), and (5) reduce to the following forms:

&
a22

b(TPwz) 8(TpW )
~++’o (A6)

+

avy awz ‘

—-F=oaz
[A7)

a
+Tpwy = - z

)

(A8)

where y = r~ and r is
tion between density and ~-derivatives is simplified to

a constant. When r is cotitant,the rela-

1

-(L=
%,i [1~-(W+W ‘-’

2 Hi T2P2
@lo)

When the general.table or graph constructed according to equation (7a)

()

2
is used, ~ becomes sfmply ~

Pl?,i
ad ~ becomes

~%7+(%fi

-1
{2 Hi T2@,i2) .

———...-. .. —— - _—. — —-— .—--—— .— -—--—— —
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